
Perceptron Branch Predictor
Simulator

CMPUT 229 lab 6

Background:

Static Predictions VS Dynamic
Predictions

Static Predictions

Always
Taken

Always
Not Taken

OR

- Simple design

- Not very accurate

- Cannot learn and adapt predictions based on program

execution behavior

Static Predictors

Dynamic Predictors

• Prediction of a given branch changes
with the execution of the program.
– Simple: a finite-state machine encodes

the outcome of a few recent executions
of the branch.

– Elaborate: Not only early branch
outcomes, but other correlated parts of
the programs are considered.

Predicting Direction
• Where we find the prediction?

• How to encode the prediction?

Look at the recent past: What was the direction
the last time this same
branch was executed?

A single bit encodes the prediction:
Prediction bit is set at prediction time.

Table
Entry

Branch Address
(or tag)

Predictor
State

0 0xFF80 0004 0

1 0xC340 00F8 1

…
n 0x0004 0000 1

1-Bit counter Dynamic Predictor

Counters Stored in Pattern
History Table (PHT)

Use PC to index (or hash)
the PHT.

Each entry of the PHT
stores the state of the
counter
associated with a branch.

PC 1-bit counter Prev. Outcome Prediction Actual Outcome

0x00400030 1 Taken Taken Taken ✅

0x00400080 0 Not Taken Not Taken Not Taken ✅

0x0040008c 0 Not Taken Not Taken Taken❌
(mispred.)

After the actual result of the branch is
determined, update the saturating counter.

1-Bit counter Dynamic
Predictor Example

PC 1-bit counter Prev. Outcome Prediction Actual Outcome

0x00400030 1 Taken Taken Taken ✅

0x00400080 0 Not Taken Not Taken Not Taken ✅

0x0040008c 1 Taken

1-Bit counter Dynamic
Predictor Example

This branch will be predicted taken the next time
it is fetched.

1-Bit counter Predictor Summary

- The PC of a branch is used to index into a table of

counters (PHT)

- Each counter indicates whether that branch

should be predicted Taken or Not Taken

- The outcome of the branch depends on its

previous outcome

- This is known as a Local dynamic predictor

Local vs Global Predictors

Local: Predictions for a branch depend only on the

past behaviour of that branch.

Global: Predictions for a branch depend on the

behaviour of other branches.

Global Predictor

1 inserted to the
right when a branch
is taken (0 otherwise)

Shifted-out
bits
are lost

8-Bit Global Shift Register
(GSR)

0 1 1 1 0 1 0 1

Most recent
branch outcome
shifted in

Oldest branch
outcome shifted
out

1 = Taken
0 = Not Taken

8-Bit Global Shift Register
(GSR)

0 1 1 1 0 1 0 1

Tracks the history of the 8 most recent branches

- The bits of the global shift register are used to index into a

table of counters (PHT)

- Each counter indicates whether the current branch should

be predicted Taken or Not Taken

- The outcome of the branch depends on global branch

history

- Predictions for current branch are independent of its PC

Global Predictor Summary

Perceptron Branch Predictor

- Uses both local and global branch history information

to make predictions

- Uses simple binary classification to learn complex

branch patterns and correlations

- Increased accuracy in many applications

What is a Perceptron?

- One of the simplests forms of neural networks

- Binary classifier

- A set of weights, where each weight is a measure of

importance that each input value has to the output

Weights

Input

y

Output

Global Shift Register
Global shift register
bits are the input
values

GSR Used for Perceptron Predictor

⋅
⋅
⋅

⋅
⋅
⋅

Global Shift Register

-1 if branch is not
taken

+1 if branch is
taken

Multiply

Predict taken if positive, not
taken if negative

bias input

w
0
 > 0: bias taken

w
0
 < 0: bias not

taken

[w0, w1, w2, ..., wn]

Each PHT entry now holds a
set of weights associated with
the branch identified by its PC.

PHT for Perceptron Predictor

Making a Prediction

Dot product:

Branch predicted
taken!

Training a Perceptron

 1 if branch was taken
Actual Outcome of the
Branch: -1 if branch was not takent =

Update weights after
actual outcome of
branch is determined

 wi = wi + txi

The perceptron weights are updated based on the
actual branch outcome

Case 1: Branch is actually taken ✅

wi = wi + txi

Case 2: Branch is actually not taken ❌

wi = wi + txi

When to Stop Training?

Threshold 𝚹
When the value y becomes
high,
 the branch has a strong bias.
No need for further training.

Intuition

Stop training is |y| >
𝚹.

Perceptron branch predictor in
RARS

Similar to the the coding question on the midterm,

perceptron_predictor.s reads and parses the binary of

another program provided as an argument.

perceptron_predictor.s will predict the branches in

the input program, and train its perceptrons on the

actual branch outcomes.

Unlike an actual perceptron branch predictor, the one in

this lab will not use the PC of a branch to access the PHT.

Instead each branch from the input program will be

assigned a static branch Id.

Branch Id 0

Branch Id 1

Branch Id 2

Branch Id 3

Input Program

Branch Id 0

Branch Id 1

Branch Id 2

…

The PHT is represented as an
array of words in this lab,
indexed by branch Id.

PHT

PHT for the Lab

[w0, w1, w2, ..., wn]

[w0, w1, w2, ..., wn]

[w0, w1, w2, ..., wn]

 Description:
 Makes a prediction on whether a particular branch will be taken or not taken,
 given the program state and branch Id

 Arguments:
 a0: Branch id

 Returns:
 None

makePrediction

 Description:
 Trains the perceptron corresponding to the branch id stored in activeBranch.

 Arguments:
 a0: Actual branch outcome (1 if taken, else -1)

 Returns:
 None

trainPredictor

activeBranch: A 1-byte global variable that holds the branch Id of the current

unresolved branch.

Instrumentation

Unlike the midterm question,

perceptron_predictor.s must modify the binary of

the input program, then begin executing the

instructions of the input program.

Why modify the input file’s binary?

The modifications to the input binary will include

inserting jumps to the functions makePrediction

and trainPredictor, before/after each branch.

Input Program

The setup and resolve
instructions have been
inserted into the binary by
perceptron_predictor.s

setup(branch id):
- Calls makePrediction

resolve(-1):
- Calls trainPredictor to

indicate that the setup
branch was not taken.

resolve(1):
- Calls trainPredictor to

indicate the setup branch
was actually taken.

How to modify the input binary
and execute it within
perceptron_predictor.s?

Self
Modifying
Code

With the self-modifying code feature enabled,

your program can jump to the starting address of

the input program’s modified binary, and begin

executing those instructions.

Required Data Structures

globalShiftRegister: This is a 1-byte global variable. Each

bit in globalShiftRegister corresponds to a previously

taken branch.

patternHistoryTable: This global variable is an array of

words that simulates a pattern history table. Each

element is a pointer to the 9-byte long array of

perceptron weights for the corresponding branch id.

instructionIndicatorsArray: A byte array where each byte
acts as an indicator that a specific sequence of
instructions must be inserted
intomodifiedInstructionsArray.

numPriorInsertionsArray: An array of 32-bit words, where
each word specifies the total number of instructions to
insert before the corresponding instruction in the
originalInstructionsArray.

originalInstructionsArray: An array that contains every

instruction from the input function.

modifiedInstructionsArray: An array that contains the

input function after the insertion of the instrumentation

function calls.

Functions to Complete

 Description:
 The primary function that initiates the instrumentation and execution stages.
 This function must modify the input binary, train and run the predictor,
 then print the results.

 Arguments:
 a0: Pointer to originalInstructionsArray
 a1: Pointer to modifiedInstructionsArray
 a2: Pointer to instructionIndicatorsArray
 a3: Pointer to numPriorInsertionsArray

 Returns:
 None

perceptronPredictor

 Description:
 This function is responsible for filling instructionIndicatorsArray.

 Arguments:
 a0: Pointer to originalInstructionsArray
 a1: Pointer to instructionIndicatorsArray

 Returns:
 None

fill_instructionIndicatorsArray

Description:
 This function is responsible for filling numPriorInsertionsArray.

 Arguments:
 a0: Pointer to instructionIndicatorsArray
 a1: Pointer to numPriorInsertionsArray

 Returns:
 None

fill_modifiedInstructionsArray

 Description:
 Makes a prediction on whether a particular branch will be taken or not taken,
 given the program state and branch Id

 Arguments:
 a0: Branch id

 Returns:
 None

makePrediction

 Description:
 Trains the perceptron corresponding to the branch id stored in activeBranch.

 Arguments:
 a0: Actual branch outcome (1 if taken, else -1)

 Returns:
 None

trainPredictor

